
Bachelor’s Thesis

Using Embedded React to
enable complex yet performant

web applications
Mithilfe von Embedded React komplexe und dennoch

performante Webanwendungen möglich machen

by

Nico Knoll

Potsdam, June 2017

Supervisor

Prof. Dr. Christoph Meinel,

Jan Renz

Internet-Technologies and Systems Group

Disclaimer

I certify that the material contained in this dissertation is my own work and

does not contain significant portions of unreferenced or unacknowledged ma-

terial. I also warrant that the above statement applies to the implementation of

the project and all associated documentation.

Hiermit versichere ich, dass diese Arbeit selbständig verfasst wurde und dass

keine anderen Quellen und Hilfsmittel als die angegebenen benutzt wurden.

Diese Aussage trifft auch für alle Implementierungen und Dokumentationen im

Rahmen dieses Projektes zu.

Potsdam, June 28, 2017

(Nico Knoll)

ii

Kurzfassung
Durch das steigende Bedürfnis nach Software zur Ausführung viel-

schichtiger Aufgaben wird diese zunehmend komplexer. In den letz-

ten Jahren wurden viele Frameworks und Bibliotheken vorgestellt,

die die Implementierung solcher Software vereinfachen sollen. Diese

wird jedoch häufig an den falschen Stellen verwendet und machen

dadurch die Anwendungen weniger leistungsstark und zuverläs-

sig. In dieser Arbeit werden die viel benutzen Frameworks / Bib-

liotheken Express und React bezüglich ihrer Komplexität und Per-

formance evaluiert. Am Ende der Arbeit wird “Embedded React”

als ein Weg präsentiert, der die Vorteile beider Technologien vereint.

Schlüsselwörte: Express, React, Javascript, Komplexität, Performance,

Embedded React

iii

Abstract
With a growing need of software that solves complex tasks, elab-

orateness and size of software keeps increasing. Many libraries and

frameworks have been produced in recent years to ease the imple-

mentation but often they are used in the wrong places which makes

applications less perfomant and less reliable. In this paper the two

commonly used libraries/frameworks Express and React get evalu-

ated based on complexity and performance. In conclusion "Embed-

ded React" is presented as a way to combine the advantages of both

technologies.

Keywords: Express, React, Javascript, complexity, performance, em-

bedded React

iv

Contents

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Project . 2

2. Related Work 3
2.1. Server Side Rendering (SSR) . 3

2.2. Automatic code splitting . 3

3. Technologies 5
3.1. Node.js . 5

3.2. Babel . 5

3.3. Webpack . 5

3.4. Gulp . 5

3.5. API Server . 6

3.6. Express . 6

3.7. React . 6

4. Evaluation of ExpressJS and React as Clients 7
4.1. Complexity . 7

4.1.1. Setup . 7

4.1.2. Request Handling / Routing 9

4.1.3. Loading and Delivering Data 10

4.1.4. Error Handling . 12

4.1.5. Application Architecture 15

4.2. Performance . 16

4.2.1. Method Description . 17

4.2.2. Interpreting the results . 18

4.3. Evaluation Results . 21

4.3.1. Express . 21

4.3.2. React . 21

5. Embedded React 23
5.1. Concept . 23

v

Contents

5.2. Implementation / Usage . 24

5.2.1. Convenience . 24

5.2.2. Provide Data . 25

5.3. Evaluation . 26

6. Conclusion 28
6.1. Future Research . 28

Glossary 30

Bibliography 33

Appendices 34

A. Performance Measuring Code 34

B. Performance Measuring Results 36

C. Questionnaire Results 50

vi

1. Introduction

1. Introduction

1.1. Motivation

With more and more real life tasks being brought to the digital world the com-

plexity and size of applicable software keeps increasing. In the same time more

and more Libraries and Frameworks are created to cope with this. Those Li-

braries and Frameworks are originally often specialized on solving just one task

but being abused as a one-fits-all solution. Therefore simple tasks often become

overly complex or complex tasks end up in far too complicated and inperfor-

mant solutions.

Alan Kay, an American computer scientist and Turing Award winner, said: "Sim-

ple things should be simple; complex things should be possible." (Kay, 1982)

Aiming to materialize these words in the context of programming a client appli-

cation for the "Schul-Cloud" (see 1.2) different Libraries and Frameworks were

evaluated in this paper. In that process two clients were produced with the same

scope of features but using two completely different technologies: Express and

React.

To decide which one to use, the two clients were assessed by performance (4.2)

and complexity (4.1). This paper describes the evaluation process and it’s results

(4), a solution to enable complex tasks with Express (5) and alternative methods

to fasten up React (2).

1

1. Introduction

1.2. Project

This paper is written based on research that was performed during the "Schul-

Cloud" ("school cloud") project. Intention of the project was to build a prototype

solution of a cloud platform for all schools in Germany as schools have been left

out by digitalization in most places so far (Meinel et al., 2017).

The "Schul-Cloud" follows a modular approach: Each of its features is devel-

oped as a microservice that can be called through the API Server (3.5). The API

Server runs completely separated from the client application which allowed me

to test the different technologies without adjusting the API.

The bachelor project "Schul-Cloud" is executed in collaboration with the Federal

Ministry of Education and Research (BMBF) and the school excellence network

"MINT-EC". Bachelor projects are meant to prepare students for real-life chal-

lenges in constructive software companies.

2

2. Related Work

2. Related Work

2.1. Server Side Rendering (SSR)

As Malek Hakim describes in his paper "Speed index and critical path rendering
performance for isomorphic single page applications" (Hakim, 2016) one approach to

cope with the long time before the content being displayed when using React -

which is after the browser loaded and evaluated the bundle 1 - is server side ren-

dering: The React components of the requested page are loaded and rendered

already on the server and delivered as static HTML. The JavaScript bundle is

loaded in the background and as soon as it is initialized replaces the static DOM

with React’s virtual one.

To use this technique the React application has to be isomorphic - all functions

have to work on the server side as well as on the client side. This is especially

complicated in the case of routing as all virtual routes that are used in the React

application have to work on the server as well so that the correct static HTML

can be rendered. There are some React routing modules that try to achieve this

and allow to define isomorphic routes like Flow Router 2 does for the Meteor

Framework 3. This feature is still experimental though. 4

2.2. Automatic code splitting

Rasmus Eneman researched different ways to improve the load time of "Sin-

gle Page Applications" (SPAs) (Eneman, 2016) for his bachelor thesis. Besides

SSR (2.1) - which got discussed before - he looked into automatic code splitting

with webpack (3.3). With webpack it is possible to split the bundle into smaller

context-sensitive bundle chunks that get only loaded if needed. This works by

looking at the import statements in the components and render a chunk e.g. for

each component.

1A JavaScript file containing all of the applications code.
2https://github.com/kadirahq/flow-router/, accessed on 10 June 17
3https://www.meteor.com/, accessed on 10 June 17
4https://guide.meteor.com/routing.html#server-side, accessed on 10 June 17

3

https://github.com/kadirahq/flow-router/
https://www.meteor.com/
https://guide.meteor.com/routing.html#server-side

2. Related Work

Using this approach the page can load faster as less code is needed to be loaded

initially. A problem it still has is that if modules are required at multiple places

they get bundled into multiple files and produce unnecessary code repetitions

when loaded. This can be improved by e.g. using a commons file that includes

the most common modules. Figuring out which ones to include here and setting

up the code splitting is still a heavy task and requires a lot of time and expertise.

4

3. Technologies

3. Technologies

3.1. Node.js

Node.js is built on Chrome’s V8 JavaScript engine and allows developer to run

JavaScript code server side. It follows a modular approach and offers developers

"the largest ecosystem of open source libraries in the world." 5 through their package

ecosystem "npm" 6. This makes it easy to create huge web applications in a short

time.

3.2. Babel

Babel 7 is a JavaScript compiler/transpiler. It can be used to compile JavaScript

dialects such as Flow or JSX into JavaScript code. It can also be used to convert

ES6 code into ES5 code to make it run on browsers that don’t support ES6 so far.

3.3. Webpack

Webpack 8 is a JavaScript module bundler. Its main task is to bundle JavaScript

applications into bundle files that include all module dependencies and can run

in the browser. It can also be used to load and move assets such as images and

stylesheets.

3.4. Gulp

Gulp 9 is a task runner built on Node.js. It mainly gets used as a build system in

front-end development. Following a modular approach functionalities such as

minifying or transpiling can be added to Gulp using Node.js modules.

5https://nodejs.org/en/about/, accessed on 8 April 2017
6https://www.npmjs.com/, accessed on 8 April 2017
7https://babeljs.io/, accessed on 8 April 2017
8https://webpack.js.org/, accessed on 8 April 2017
9http://gulpjs.com/, accessed on 8 April 2017

5

https://nodejs.org/en/about/
https://www.npmjs.com/
https://babeljs.io/
https://webpack.js.org/
http://gulpjs.com/

3. Technologies

3.5. API Server

In the following API Server references the Schul-Cloud Server 10. The Schul-

Cloud Server is based on FeathersJS 11 and does implement a REST-like interface

through various microservices. It is connected to a mongo database and stores

models and relations. It also works as proxy to external microservices (the full

list can be found at https://github.com/schulcloud/).

Communication with the API Server can be done using JSON requests. It offers

an abstraction of logic so client applications can be compared in the following

evaluation (4).

3.6. Express

Express 12 is a minimal Node.js web application framework. It runs server side

and offers routing and support for several template engines among other fea-

tures. It is easily extendable through npm modules (see 3.1).

3.7. React

React 13 is a JavaScript library for building user interfaces. It runs client side

and allows developers to easily develop state-driven applications. An applica-

tion can contain several components that can be used multiple times in multiple

places.

10https://github.com/schulcloud/schulcloud-server, accessed on 9 April 2017
11https://feathersjs.com/, accessed on 9 April 2017
12http://expressjs.com/, accessed on 9 April 2017
13https://facebook.github.io/react/, accessed on 9 April 2017

6

https://github.com/schulcloud/
https://github.com/schulcloud/schulcloud-server
https://feathersjs.com/
http://expressjs.com/
https://facebook.github.io/react/

4. Evaluation of ExpressJS and React as Clients

4. Evaluation of ExpressJS and React as Clients

As mentioned before (see 1.1) in the process of testing Libraries and Frameworks

two clients were produced with the same scope of features. One using Express,

the other using React.

There are several differences between those two technologies. The main dispar-

ity is that Express runs server side and delivers only the results to the client,

React however runs completely client side. Both technologies have advantages

and disadvantages in executing tasks.

In this chapter a closer look on those differences is taken and the proper use case

of both technologies evaluated.

4.1. Complexity

Complexity is hard to define. In this context the complexity of the client de-

scribes how easy it is to understand it’s code, it’s dependencies and how the

client works. This is an important factor as the Schul-Cloud is an open source

project and therefore has to be easy to be setup and be understand to get new

developers involved.

To obtain unbiased opinions on that topic a questionnaire was evolved interro-

gating other developers about how easy it is for them to get started with React

and Express, to create a new application from scratch with those technologies,

what they like about them, where they see the limitations and what they would

use them for. The questionnaire’s results are integrated into the following eval-

uation.

4.1.1. Setup

For setting up an Express application only a Node.js server is required. Express

can be installed as a module using npm:

7

4. Evaluation of ExpressJS and React as Clients

1 npm install express �
Code 1: Setting up Express

A minimal sample Express application looks like this:

1 const express = require(’express’);

2 const app = express();

3

4 app.get(’/’, function (req, res) {

5 res.send(’Hello World!’);

6 });

7

8 app.listen(3000, function () {

9 console.log(’Example app listening on port 3000!’);

10 }); �
Code 2: Taken from https://expressjs.com/ (4 June 2017)

Setting up a React application has some more requirements. As it has to run

client side it is recommended 14 to use a module bundler like webpack. The

output of the module bundler is a JavaScript file that has to be delivered - in ad-

dition to an HTML output that includes the JavaScript file and offers an element

that can contain the react virtual DOM e.g. a <div> tag with the ID root - by a

server. Therefore a server is required as well. A sample React application using

a module bundler looks like this:

14https://facebook.github.io/react/docs/installation.html#hello-world-

with-es6-and-jsx, accessed on 4 June 2017

8

https://expressjs.com/en/starter/hello-world.html
https://facebook.github.io/react/docs/installation.html#hello-world-with-es6-and-jsx
https://facebook.github.io/react/docs/installation.html#hello-world-with-es6-and-jsx

4. Evaluation of ExpressJS and React as Clients

1 import React from ’react’;

2 import ReactDOM from ’react-dom’;

3

4 ReactDOM.render(

5 <h1>Hello, world!</h1>,

6 document.getElementById(’root’)

7); �
Code 3: Taken from https://facebook.github.io/ (4 June 2017)

It is easy to recognize that the Node.js modules react and react-dom are re-

quired as well.

React can also be used without a module bundler (see section 5).

4.1.2. Request Handling / Routing

As Express runs server side routing is done server side as well.

Routing with Express begins as soon as a new request is received. The request

gets routed through all routes/middleware that have been setup. Each route

can modify the response until either one route calls res.send() to deliver a

response to the user or all routes are processed.

1 app.get(’/hello-world/’, function (req, res) {

2 res.send(’hello world’);

3 }); �
Code 4: Routing with Express

React doesn’t offer native routing. There are different packages that can be used.

For comparability to Express react-router was used, which is the most popular

react routing solution 15.

15It has more then 22.000 stars on GitHub: https://github.com/ReactTraining/react-
router

9

https://facebook.github.io/react/docs/installation.html#hello-world-with-es6-and-jsx
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router

4. Evaluation of ExpressJS and React as Clients

1 <Route path="/hello-world/" component={HelloWorldView} /> �
Code 5: Routing with React-Router

As a React application gets loaded once and does virtual routing, different routes

for e.g. POST and GET requests cannot be defined.

4.1.3. Loading and Delivering Data

There are several technologies that can be used to connect to a server to receive

data such as HTTP requests and websockets. In the case of the API Server only

HTTP requests are allowed by offering a REST-like interface to the microser-

vices.

Using Express the user’s browser sends a request to load a different page or re-

source by e.g. clicking a link, browsing another URL or via AJAX to the Express

application. The Express application needs to load the requested data from the

API Server and therefore sends another HTTP request to the API Server. It has

to wait for the API Server’s response before it is able to send the result to the

user and serve the request.

Express supports different view engines such as Pug (formerly known as "Jade")

or Handlebars. Those are used to render the received data into valid HTML

which gets delivered to the client as the result of the request

It is not possible for Express to change parts of the page after it got delivered to

the user. This is because Express works on a per-request basis (see 4.1.2). The

only way to change the page’s HTML code natively from Express is by reloading

the current page or loading another page.

10

4. Evaluation of ExpressJS and React as Clients

Figure 1: Loading data from the API Server with Express

For React there are different ways of loading data or handling incoming data:

Using a composer (e.g. react-komposer) it is possible to defer displaying

the data until all of it is loaded. This mimics the same behaviour server-side

frameworks such as Express or Sails.js have.

This behaviour makes sense if the React component deeply relies on all data

being loaded before it can be displayed or if the developer doesn’t want the

page to have blocks of content popping up after the page got displayed.

The other option is to display the data as soon as it comes in. This is possible

because of the fact that React is running client side and can change it’s virtual

DOM as often as it wants. It is not limited to answer to a request by the client to

display new data.

This is a behaviour that is known from interactive components such as chats or

live tickers where it makes sense to show the most recent information as soon as

possible without forcing the user to reload the page.

11

4. Evaluation of ExpressJS and React as Clients

Figure 2: Loading data from the API Server with React

4.1.4. Error Handling

Error handling has to be a key aspect in writing any software. Errors shouldn’t

crash the application but also must not be ignored as the following functions

that depend on the correct result may would work on wrong data afterwards.

There are different kinds of errors that may happen within running an web ap-

plication. In the following a closer look at non-breaking errors such as HTTP-

Errors and breaking errors such as "JavaScript Runtime Errors" is taken.

A good example for a HTTP-Errors is the "Error 404: Not found." which is called

when a user tries to open a path that is not available.

In Express non-breaking errors get handled by an error middleware. Regular

middleware functions take three objects as arguments: the request object, the

response object and a callback function usually called next(). In the case of the

12

4. Evaluation of ExpressJS and React as Clients

error handling middleware there is an additional error object argument. That

object gets set when a middleware calls next(err) with an error object as only

argument. A sample error handling middleware looks like this:

1 app.use(function (err, req, res, next) {

2 if (res.headersSent) {

3 return next(err);

4 }

5

6 const status = err.status || err.statusCode;

7 res.status(status);

8 res.render(’error’, { error: err });

9 }); �
Code 6: Express error handling middleware

For triggering a 404 error a wildcard route is added at the end of the router

configuration. As the request object gets passed through all routes and middle-

wares in the order they were registered in the router, the wildcard route gets the

request only at the end if no other route serves it before by sending the response

to the client. In the wildcard route a new error object is created and send to the

error handler by calling next() with it:

1 app.use(function (req, res, next) {

2 const err = new Error(’Not Found’);

3 err.status = 404;

4 next(err);

5 }); �
Code 7: Triggering a 404 error in Express

Breaking errors such as "Uncaught TypeError: Cannot read property ’...’ of un-

defined" which often appear if an API Server sends an unexpected response and

the following routines try to work on it can crash the node process the Express

server runs on. This can be prevented by adding data validation before trying

13

4. Evaluation of ExpressJS and React as Clients

to access the received data.

In addition by using a demon such as nodeman or forever the Node.js server

gets restarted automatically and is able to handle new responses again even after

the process crashed. This is important as there is only one application that gets

accessed by all clients.

React doesn’t offer any default implementation of an error handler for non-

breaking errors.

And while React doesn’t have a native router as mentioned before react-router

allows handling 404 errors almost the same way Express does. At the end of the

router configuration it is possible to add a wildcard route that displays e.g. an

error page:

1 <Router history={browserHistory}>

2 <Route path="/" component={App}>

3 {/* Your other routes here */}

4 <Route path="*" component={NotFound} />

5 </Route>

6 </Router> �
Code 8: "Page not found" error handling with react-router

For React running client side the application crashes on an breaking error and

cannot be restarted like the server side application but the user has to reinitialize

the application by e.g. reloading the request page.

There are different ideas and modules that try to prevent crashing of the react

application in case of breaking errors. But they all share the same approach: The

React render function gets wrapped into a try-catch construct that prevents

any runtime error from being thrown and therefore crashing the application. In

the catch part the error then can be handled appropriately.

14

4. Evaluation of ExpressJS and React as Clients

4.1.5. Application Architecture

In the case of Express the traditional split of models, views and controllers that

is suggested by Express 16 was performed whereas models aren’t stored in the

client but directly on the API server. controllers mainly includes the routing

logic.

Additionally the following directories and files exist: test (which contains

frontend tests), static (which contains static assets such as images and stylesheets),

helpers (which contains various helpers that get included into multiple con-

trollers) and api.js (which contains the API server adapter).

Therefore the directory tree looks like this:

/
api.js
app.js
bin

www
controllers
gulpfile.js
helpers
node_modules
package.json
static

fonts
images
scripts
styles
vendor

test
views

Figure 3: Directory tree of the Express client

For React the "Mantra application architecture" 17 - that currently is a "Working

Draft" written by Kadira Inc. - was applied.

16http://expressjs.com/en/starter/generator.html, accessed on 7 June 2017
17https://kadirahq.github.io/mantra/, accessed on 7 June 2017

15

http://expressjs.com/en/starter/generator.html
https://kadirahq.github.io/mantra/

4. Evaluation of ExpressJS and React as Clients

The main goals of Mantra are to make React applications maintainable and fu-

ture proof. This is done by forcing the developer to split the entire application

into modules. A module usually contains actions (which contain business

logic such as validations and state management), components (which only dis-

play data, only manage their own state and can be used in multiple contain-

ers) and containers (which form the integration layer and are responsible for

loading data from the API Server, composing components and provide them

with the loaded data).

A regular mantra directory tree looks like this:

/
src

app.js
configs
modules

courses
actions
components
containers
index.js
routes.jsx
styles

...
static

fonts
images

README.md
package.json
postcss.config.js
server.js
webpack.config.js

Figure 4: Directory tree of the React client

4.2. Performance

Loading times are a major aspect in the evaluation of the clients as user satisfac-

tion as well as business success - e.g. in the case of Amazon (Eaton, 2012) - is

16

4. Evaluation of ExpressJS and React as Clients

directly connected to it. Research by Fiona Nah has shown that the average user

is willing to wait two seconds at most before leaving the page. (Nah, 2003)

There are several factors that influence how long a website needs to load includ-

ing the speed of the users internet connection or the number and size of assets

(JavaScript files, stylesheets, images, ...). While the first factor can’t be improved

programmatically, the number of requests the browser has to make, the size of

each requested file and the cachability of those files can be optimized.

4.2.1. Method Description

Based on the research by Rasmus Eneman (Eneman, 2016) the indicators used

to evaluate the perceived performance of the application are the "Time To First

Paint", "Time To Fully Loaded" and navigation time.

The "Time To First Paint" describes the time that the browser needs before first

elements can be shown. Eneman used the "Time To First Meaningful Paint" in-

stead but the results have shown that for the evaluated applications those two

times are approximately the same with a possible deviation of a few millisec-

onds.

The experiment was executed using Google Chrome (Version 58.0.3029.110) on

an Apple MacBook Pro (Early 2015, 16 GB RAM, 2,7 GHz Intel Core i5) running

macOS 10.12.3. For both of the tested applications the experiments were run

once with caching enabled and once with caching disabled.

The measurements were taken from Chrome’s implementation of the "Naviga-

tion Timing API" 18. The code used to receive the results and repeat each test

100 times is based on sample code by Sara Gonçalves 19 and can be found in the

Appendix A as well as the raw measurements.

18https://w3c.github.io/navigation-timing/, accessed on 12 June 2017
19https://medium.com/outsystems-engineering/measuring-web-app-runtime-

performance-dfd8a6931418, 10 June 2017

17

https://w3c.github.io/navigation-timing/
https://medium.com/outsystems-engineering/measuring-web-app-runtime-performance-dfd8a6931418
https://medium.com/outsystems-engineering/measuring-web-app-runtime-performance-dfd8a6931418

4. Evaluation of ExpressJS and React as Clients

4.2.2. Interpreting the results

Using Express most of the work is done on the server and only the rendered

HTML gets delivered in the response. The browser doesn’t have to wait until all

assets have been loaded before displaying the HTML. This behaviour can result

in a "FOUC" 20 as CSS files may not be loaded fast enough. As soon as they are

available the browser repaints the view with the styling rules defined in the CSS

code. Therefore the Time To First Paint is really small.

Using a naive approach to run React client side all of it dependencies get bun-

dled into one bundle file. As it includes all dependencies the bundle file usually

gets really big. The browser cannot paint any frame until loading, parsing and

evaluating is done which can take the browser long on initial load. Caching the

bundled file improves this drastically as shown in Figure 6.

0 200 400 600 800 1,000 1,200 1,400 1,600

Evaluating Script

Content Download

Waiting (TTFB)

Request Sent

Time [ms]

Figure 5: Example of parsing a bundled file from Schul-Cloud React Client, 5mb

In addition React can only start to load variable data from the API Server as

soon as the entire loading and evaluating phase of the bundled application is

done and by using react-komposer to prevent the components from being

shown before their data is loaded this can result into an even longer Time To

First Paint.

20"Flash of Unstyled Content"

18

4. Evaluation of ExpressJS and React as Clients

0 400 800 1,200 1,600 2,000 2,400 2,800

React (cache)

React

Express (cache)

Express

Time [ms]

Figure 6: Time To First Paint

As with Express the browser can paint the received data as soon as it gets it the

Time To First Paint is always smaller than the time to fully loaded.

With React it is the opposite. The browser has to first load the entire bundle and

evaluate it before the first paint can happen. Therefore the Time To First Paint is

always bigger than the Time To Fully Loaded.

19

4. Evaluation of ExpressJS and React as Clients

0 400 800 1,200 1,600 2,000 2,400 2,800

React (cache)

React

Express (cache)

Express

Time [ms]

Figure 7: Time To Fully Loaded

While React only loads the one bundled JavaScript file, Express sends multiple

smaller JavaScript files to the browser. An advantage of loading multiple smaller

files is that each file can get cached by the browser individually. Changes in the

code only force the changed files to be reloaded and cached again.

Navigating on the site

With Express clicking a link in the client sends a new request to the Express

server which results in a new server response and a reload of the page. As most

of the assets are cached already only newly referenced files get loaded from the

server and the performance is the same as shown in the figures above under

"Express (cache)". The advantage of React here is that once the application is

loaded the entire website is loaded. It won’t send additional request to the server

to load a new view which makes page changes instant. As react-komposer is

used to delay showing new components until the entire data is loaded from the

API Server the navigation speed only depends on the speed of the API Server

and the user’s internet connection.

20

4. Evaluation of ExpressJS and React as Clients

4.3. Evaluation Results

4.3.1. Express

Regarding loading and processing times the main advantage Express has over

React is that it runs server side. Therefore calculations and loading times don’t

depend on the client’s device but on the server’s infrastructure. The client only

receives the result of the server’s calculations instead of the entire application

which enables smaller loading times as the application is already running on

the server and doesn’t have to be loaded in the browser.

Unbundled resources allow the client to use efficient caching techniques which

improves the Time To Fully Loaded as well. Common tasks like routing are easy

and intuitively doable.

That all users share the same application on the server can be a disadvantage.

The server has to generate the entire output and deliver it each time to each

client. That the server can only response to requests from the client and the

client needs to load a new page to make a request makes it hard to use it for

interactive tools or applications that need to load and display a lot of additional

or changing data.

4.3.2. React

While loading a react application requires the loading and evaluating of the en-

tire application in the client which results in a long Time To Fully Loaded and

even longer Time To First Paint it has some advantages over Express. Especially

if it comes to interactive application that need to load data dynamically or react

on data changes without reloading the page.

As React is state-driver and works on a virtual DOM it allows websites to change

the DOM easily from the inside by changing the state instead of changing the

real DOM from the outside with Libraries such as jQuery or plain JavaScript.

As mentioned above React applications require the client to be able to run JavaScript

and to initialize the entire application before the DOM can be displayed. This

21

4. Evaluation of ExpressJS and React as Clients

can be problematic for e.g. older devices or crawlers that only take the real

DOM which is almost empty in the case of React applications. As React is only a

JavaScript Library for building user interfaces it doesn’t come with native Rout-

ing or other features you get from Frameworks like Express.

22

5. Embedded React

5. Embedded React

5.1. Concept

In its core "Embedded React" acts and gets used like an external widget e.g. the

<video> or <iframe> tag or an flash object:

1 <div id="embedded-widget"></div> �
Code 9: Embedded React sample widget

But as it is a native HTML tag it comes with complete browser support. To

populate the Embedded React widget the standalone react and react-dom

libraries are needed. Those can be used without any further dependencies. 21

The page including the React libraries and the <script> tag gets rendered on

the server and delivered to the client. The client renders the received DOM and

paints the page. While parsing the received HTML it adds the initialization of

the widget to the initialization queue. The initialization process replaces the

widget in the DOM with an virtual DOM that’s state is managed by React.

As a result the user sees the static page contents first really fast and after ini-

tialization the embedded React component instead of waiting for the browser

to parse the entire bundled JavaScript file. Those bundled files can be really big

depending on how many libraries are used. As shown above loading this one

big file and parsing it does take longer than loading chunks and initializing the

virtual DOM afterwards.

21https://facebook.github.io/react/docs/installation.html, accessed on 28
May 2017

23

https://facebook.github.io/react/docs/installation.html

5. Embedded React

5.2. Implementation / Usage

5.2.1. Convenience

It is a common misconception that JSX has to be used to write React components

and that you have to use ES6 class syntax. At heart a react component gets

constructed by a call to React.createClass() which is a function offered

by the React library. 22 The virtual DOM elements for this class get created by

React.createElement() which is offered by the React library as well.

As ES6 is currently not completely supported by major browsers it is recom-

mended to use plain ES5 for client side code. 23

1 var Greeting = React.createClass({

2 render: function() {

3 return React.createElement(’div’, null, ’Hello ’ + this.props.

toWhat);

4 }

5 });

6

7 ReactDOM.render(

8 React.createElement(Greeting, {toWhat: ’World’}, null),

9 document.getElementById(’embedded-widget’)

10); �
Code 10: Defining React components in plain JavaScript

But after all it is possible to use the more convenient JSX and ES6 syntax by using

e.g. Babel with an ES6 to ES5 and JSX to ES5 transpiler:

22https://facebook.github.io/react/docs/react-without-es6.html, accessed
on 28 May 2017

23http://caniuse.com/#search=es6, accessed on 28 May 2017

24

https://facebook.github.io/react/docs/react-without-es6.html
http://caniuse.com/#search=es6

5. Embedded React

1 babel({

2 presets: [["es2015", { modules: false }]],

3 plugins: ["transform-react-jsx"]

4 }); �
Code 11: Babel setup for Embedded React

Important for the babel configuration is to use modules: false as depen-

dencies shouldn’t be bundled into the generated ES5 code.

With transpiling the code above can be written in a convenient and more familiar

way:

1 class Greeting extends React.Component {

2 render() {

3 return <div>Hello {this.props.toWhat}</div>;

4 }

5 };

6

7 ReactDOM.render(

8 <Greeting toWhat="World" />,

9 document.getElementById(’embedded-widget’)

10); �
Code 12: Defining React components with ES6 and JSX

5.2.2. Provide Data

HTML5 introduced the data attribute 24 for providing additional data to an

HTML object. As React needs to be initialized into a real DOM element, this

attribute can be used to hold the data that should be provided directly to the

React component.

One feature of the data attribute specification comes in really handy: By pars-

24https://www.w3.org/TR/2011/WD-html5-20110525/elements.html#embedding-

custom-non-visible-data-with-the-data-attributes, accessed on 7 June 2017

25

https://www.w3.org/TR/2011/WD-html5-20110525/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
https://www.w3.org/TR/2011/WD-html5-20110525/elements.html#embedding-custom-non-visible-data-with-the-data-attributes

5. Embedded React

ing the data attribute it’s key becomes camelCase so it can be used directly in

the JavaScript code (e.g. <... data-our-provided-data=""> becomes

accessible through element.dataset.ourProvidedData) and the value au-

tomatically gets parsed as well if it contains JSON.

So all that has to be done to provide data is the following: Regarding the HTML

part the following code has to be added:

1 <div id="root" data-our-provided-data="SOMETHING"></div> �
Code 13: Using the HTML5 data tag to provide data to React component

The React component can now be initialized like this:

1 const root = document.getElementById(’root’);

2

3 ReactDOM.render(

4 <OurComponent data={root.dataset.ourProvidedData} />,

5 root

6); �
Code 14: Initializing the React component with provided data

In OurComponent the data will be accessible through its properties 25.

5.3. Evaluation

As we use Express as main application we get all the benefits it provides such as

routing and request handling. The Time To First Paint is the same as shown in

Figure 6. The Time To Fully Loaded without caching takes a longer then those

in Figure 7 as additional JavaScript files have to be loaded and evaluated. The

whole application but the embedded React component is already usable as soon

as the HTML gets displayed.

25Properties can be accessed through this.props.data.

26

5. Embedded React

The disadvantage Express had in reacting on changing and reloading data is

solved as the Embedded React component can behave independently from the

other parts of the application. In addition as the required files (react.js,

react-dom.js and the Embedded React component’s code) are not bundled

they can be cached independently and don’t take as long to load and evaluate

as shown with the one bundled file in Figure 5.

27

6. Conclusion

6. Conclusion

As shown in the evaluation both techniques - Express and React - do have a right

to exist if used correctly.

Express should be used for running server side applications. It runs fast and

reliable on the server and only delivers what the browser needs to display the

page with a minimal overhead. The questionnaire has shown that most devel-

opers score Express applications very easy to setup and work with and do like

especially the easy way to setup routes or use Express as API as well.

React allows to build complex user interfaces and applications with lots of in-

teraction. By offering complex functionalities developers annotate it is not that

easy to setup a new React application as one has two setup bundling as well as

a server that delivers the bundled script to the client.

Performancewise Express beats React as it comes with a faster Time To First

Paint as well as a speedier Time To Fully Loaded.

Embedded React concedes to take the best of both techniques and combine it: It

makes simple things simple and complex things possible.

6.1. Future Research

At the current state React components work like widgets. They get initialized

after the page has already been rendered. So the user faces a blank section for a

short time.

A way to improve could be the use of Server Side Rendering for components.

Hereby the component would get rendered on the server, included in the gener-

ated HTML of the response and be delivered in the initial page load. After the

JavaScript code is loaded and evaluated it would get replaced by the real com-

ponent with virtual DOM as described in the “Server Side Rendering” section

of the “Related Work” chapter.

Another open question is how to properly structure dependencies. As no mod-

ule bundler is used at the moment node modules cannot be used directly from

28

6. Conclusion

npm but have to be available as standalone libraries. Some npm modules offer

UMD (“Universal Module Definition”) builds which are already including all

dependencies the module has so that they are capable of working everywhere.

An interesting research topic would be trying to use module bundling without

repeatedly bundling the same libraries like React or React-DOM over and over

again.

29

Glossary

Glossary

AJAX

"Asynchronous JavaScript and XML" defines a way to load data using

JavaScript after the website got fully loaded and displayed by sending new

requests to a server in the background.

API

An “application programming interface” defines an interface that e.g. (web)

applications offer that can be used by other (web) applications to commu-

nicate. One standarized API pattern is the “RESTful API”.

Assets

Assets of a website are e.g. images, music, videos, stylesheets or JavaScript

files that are requested after the HTML got parsed.

Compiling

"Compiling is the general term for taking source code written in one lan-

guage and transforming into another" 26.

DOM

The “Document Object Model” represents the parsed XML/HTML as a

tree structure. Nodes inside this tree can be modified, deleted or created.

The painted webpage shown by the browser is based on this tree.

ES2015 / ES6 / ECMAScript 6

The latest JavaScript specification.

26via https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/, ac-
cessed on 12 June 2017

30

https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/

Glossary

HTTP

The “Hypertext Transfer Protocol” is a stateless-protocol defines how data

is transfered between a client and a server. Usually data transfer starts

with a request from the client and ends with a response from the server.

Isomorphic

The code of an isomorphic web application can be run server side as well

as client side. This is important for techniques such as Server Side Render-

ing.

JSX

JSX is an XML/HTML-like syntax used by React for defining components.

It gets compiled into JavaScript.

Microservices

Following a microservice architecture the functionalities of an application

get encapsulated in smaller loosely coupled services. This benefits the

maintainability and reusability of those functionalities.

REST / RESTful APIs

The “Representational State Transfer” defines an interface for applications

by defining request methods such as GET, POST, PATCH, DELETE and

defines how web application should react on those.

Transpiling

"Transpiling is a specific term for taking source code written in one lan-

guage and transforming into another language that has a similar level of

abstraction" 27.

27via https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/, ac-
cessed on 12 June 2017

31

https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/

Glossary

Websockets

Websockets offer a full-duplex connection between e.g. a client and a

server. In contrast to the HTTP request a websocket connection stays opened

so all involved parties can ongoing send and receive data.

32

References

References

Eaton, Kit (2012).

How One Second Could Cost Amazon $1.6 Billion In Sales.

URL: http://www.fastcompany.com/1825005/how%5C-one%5C-

secondcould%5C-cost%5C-amazon-16-billion-sales (accessed on

07 June 2017).

Eneman, Rasmus (2016).

Improving load time of SPAs - An evaluation of three performance techniques.

URL: http://www.diva-portal.org/smash/get/diva2:945665/

FULLTEXT01.pdf (accessed on 07 June 2017).

Hakim, Malek (2016).

Speed index and critical path rendering performance for isomorphic single page appli-
cations.

URL: http://cs.winona.edu/CSConference/2016conference.pdf

(accessed on 07 June 2017).

Kay, Alan (1982).

“Simple things should be simple; complex things should be possible.”

In: Byte Magazine Volume 07 Number 04 - Human Factors Engineering, p. 274.

Meinel, Christoph et al. (2017).

Die Cloud für Schulen in Deutschland.

Konzept und Pilotierung der Schul-Cloud.

ISBN: 978-3-86956-397-8.

Nah, Fiona Fui-Hoon (2003).

A Study on Tolerable Waiting Time: How Long Are Web Users Willing to Wait?
URL: https://pdfs.semanticscholar.org/e09f/f31852c87e19bf

921a0e38565a901da61f5c.pdf (accessed on 01 June 2017).

33

http://www.fastcompany.com/1825005/how%5C-one%5C-secondcould%5C-cost%5C-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how%5C-one%5C-secondcould%5C-cost%5C-amazon-16-billion-sales
http://www.diva-portal.org/smash/get/diva2:945665/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:945665/FULLTEXT01.pdf
http://cs.winona.edu/CSConference/2016conference.pdf
https://pdfs.semanticscholar.org/e09f/f31852c87e19bf921a0e38565a901da61f5c.pdf
https://pdfs.semanticscholar.org/e09f/f31852c87e19bf921a0e38565a901da61f5c.pdf

Appendices

A. Performance Measuring Code

1 window.onload = function () {

2 var now = performance.now();

3 var sampleSize = 100;

4 var refreshAfter = 5000;

5

6 if((JSON.parse(localStorage.getItem(’perf’)) || []).length <

sampleSize) {

7

8 window.setTimeout(function() {

9 // Get results from Navigation Timing API

10 // https://developer.mozilla.org/en-US/docs/Web/API/

Navigation_timing_API

11 var timing = performance.timing;

12 var requestEntries = performance.getEntries();

13 var perfData = {

14 JSFilesCount: requestEntries.filter(function(element){return

element.name.indexOf(’.js’)> -1;}).length,

15 CSSFilesCount: requestEntries.filter(function(element){return

element.name.indexOf(’.css’)> -1;}).length,

16 FilesCount: requestEntries.length + 1,

17 TimeToFirstByte: timing.responseStart - timing.navigationStart,

18 TimeToDOMContentLoad: timing.domContentLoadedEventEnd - timing.

navigationStart,

19 TimeToFirstPaint: Math.round((window.chrome.loadTimes().

firstPaintTime * 1000) - (window.chrome.loadTimes().startLoadTime *

1000)),

20 TimeToLoad: timing.loadEventEnd - timing.navigationStart,

21 TimeToFinish: Math.ceil(now),

22 IsFirstLoad: requestEntries.filter(function(element){return

element.duration == 0;}).length == 0 ? 1 : 0,

23 LoadDuration: timing.loadEventEnd - timing.loadEventStart

24 }

34

A. Performance Measuring Code

25

26 // Add results to localstorage so we can export them at the end

all together

27 storedPerf = JSON.parse(localStorage.getItem(’perf’)) || [];

28 storedPerf.push(perfData)

29 localStorage.setItem(’perf’, JSON.stringify(storedPerf))

30

31 // reload page for next run

32 // first argument describes if cache should be disabled or not

33 location.reload(false);

34 }, refreshAfter);

35 } else {

36 alert(’Done.’)

37 }

38 }; �

35

B. Performance Measuring Results

B. Performance Measuring Results

In the following tables only the relevant results from the performance measuring

code in Appendix A are shown.

Table 1: Raw results for Express without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 89 428 928

4 89 476 1024

4 86 461 971

4 80 425 1040

4 126 541 985

4 81 558 933

4 95 480 890

4 103 472 1015

4 82 445 964

4 84 425 986

4 91 472 982

4 81 453 1202

4 77 468 947

4 83 462 1345

4 76 462 1427

4 100 545 1003

4 77 461 1893

4 100 459 996

4 90 484 923

4 77 434 947

4 76 459 943

4 104 481 996

4 80 501 1037

4 80 445 996

4 113 466 984

4 75 374 1109

4 70 373 949

36

B. Performance Measuring Results

Table 1: Raw results for Express without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 90 386 925

4 93 386 1506

4 72 398 1403

4 71 376 946

4 70 397 816

4 64 370 1312

4 70 383 1315

4 71 409 935

4 70 352 947

4 63 391 933

4 70 362 2023

4 88 417 943

4 75 365 913

4 66 377 800

4 89 411 933

4 71 369 922

4 75 380 1016

4 101 392 936

4 74 427 966

4 73 364 931

4 91 432 1224

4 77 425 923

4 103 407 946

4 82 380 815

4 82 417 925

4 107 441 1013

4 94 431 923

4 78 412 920

4 78 386 902

4 76 384 875

4 77 386 1549

37

B. Performance Measuring Results

Table 1: Raw results for Express without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 71 392 1157

4 70 394 1218

4 70 379 1223

4 88 420 1161

4 79 405 1144

4 72 406 1245

4 86 423 1191

4 72 370 1154

4 72 377 1209

4 95 426 1186

4 68 377 1170

4 70 378 1248

4 68 412 1171

4 68 380 1183

4 78 399 1178

4 62 381 1166

4 70 387 1176

4 72 382 1148

4 66 360 1274

4 67 392 887

4 68 382 884

4 70 368 790

4 69 427 901

4 61 369 910

4 92 378 926

4 69 355 790

4 79 412 898

4 95 417 923

4 69 392 919

4 83 470 997

4 87 433 976

38

B. Performance Measuring Results

Table 1: Raw results for Express without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 72 349 920

4 73 395 1121

4 68 452 828

4 72 350 973

4 75 393 902

4 79 581 1032

4 75 360 783

4 65 355 921

4 68 364 793

4 66 393 894

4 72 403 888

Table 2: Raw results for Express with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 181 492 932

4 117 388 818

4 109 343 550

4 72 298 504

4 71 289 496

4 69 255 499

4 81 311 564

4 64 242 456

4 79 285 474

4 71 249 454

4 66 275 458

4 64 285 525

4 69 273 521

4 58 274 447

4 64 276 454

4 57 245 426

39

B. Performance Measuring Results

Table 2: Raw results for Express with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 62 262 485

4 68 247 450

4 63 254 454

4 85 214 517

4 63 288 477

4 63 274 508

4 105 321 537

4 87 295 513

4 60 273 502

4 62 267 454

4 66 253 475

4 60 285 950

4 62 246 492

4 64 280 499

4 64 282 494

4 62 246 499

4 62 237 492

4 60 267 455

4 58 230 424

4 58 249 473

4 65 273 502

4 53 234 483

4 60 251 491

4 62 268 449

4 56 255 463

4 70 280 508

4 73 275 450

4 67 248 461

4 91 212 759

4 99 310 539

4 61 266 449

40

B. Performance Measuring Results

Table 2: Raw results for Express with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 99 312 511

4 130 337 542

4 124 342 557

4 90 314 521

4 68 278 496

4 85 341 564

4 63 254 480

4 58 272 445

4 68 303 578

4 59 262 511

4 58 290 542

4 59 263 443

4 61 234 471

4 63 246 473

4 64 278 485

4 57 243 467

4 60 276 490

4 81 254 541

4 63 280 883

4 63 280 484

4 57 256 492

4 59 247 493

4 62 280 520

4 59 283 462

4 59 235 458

4 87 299 488

4 60 259 469

4 62 235 468

4 94 292 501

4 95 337 562

4 70 270 485

41

B. Performance Measuring Results

Table 2: Raw results for Express with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

4 59 241 494

4 67 289 1115

4 73 280 456

4 65 261 465

4 60 278 461

4 62 290 511

4 57 234 508

4 63 288 508

4 56 229 517

4 56 275 722

4 60 283 443

4 61 262 481

4 68 242 1175

4 64 245 492

4 58 265 448

4 62 233 410

4 58 274 489

4 56 239 470

4 83 266 498

4 61 270 481

4 61 251 460

4 88 307 521

Table 3: Raw results for React without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 37 1946 1451

1 33 1577 1252

1 32 1571 1259

1 33 1686 1354

1 32 1628 1276

42

B. Performance Measuring Results

Table 3: Raw results for React without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 31 1602 1261

1 37 1650 1266

1 25 1552 1248

1 36 1556 1259

1 32 1586 1268

1 34 1635 1319

1 36 1619 1265

1 39 1631 1316

1 30 1537 1252

1 33 1608 1290

1 33 1522 1245

1 30 1610 1277

1 38 1980 1647

1 33 1556 1232

1 36 1638 1308

1 29 1702 1350

1 23 1588 1226

1 30 1618 1269

1 26 1519 1164

1 27 1619 1287

1 30 1561 1234

1 33 1640 1273

1 32 1651 1321

1 33 1657 1289

1 34 1519 1201

1 38 1638 1324

1 32 1587 1274

1 36 1597 1266

1 32 1522 1200

1 35 1517 1249

1 34 1641 1281

43

B. Performance Measuring Results

Table 3: Raw results for React without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 30 1690 1331

1 29 1596 1246

1 30 1544 1237

1 36 1661 1305

1 28 1577 1251

1 35 1642 1304

1 33 1563 1240

1 33 1651 1283

1 34 1586 1275

1 35 1589 1265

1 28 1602 1279

1 34 1593 1237

1 31 1566 1221

1 31 1668 1313

1 35 1611 1273

1 35 1564 1229

1 35 1546 1239

1 27 1610 1286

1 39 1553 1219

1 34 1582 1270

1 37 1588 1234

1 32 1597 1294

1 36 1574 1247

1 29 1656 1303

1 34 1707 1341

1 33 1588 1279

1 36 1618 1280

1 25 1609 1284

1 35 1640 1311

1 24 1608 1221

1 34 1611 1259

44

B. Performance Measuring Results

Table 3: Raw results for React without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 33 1634 1287

1 33 1614 1303

1 32 1562 1234

1 28 1693 1329

1 35 1640 1306

1 27 1641 1277

1 27 1654 1340

1 31 1641 1303

1 35 1590 1266

1 34 1600 1284

1 34 1569 1246

1 30 1555 1252

1 29 1554 1255

1 36 1537 1219

1 37 1618 1305

1 34 1609 1286

1 37 1608 1264

1 30 1591 1274

1 31 1598 1295

1 37 1602 1250

1 33 1595 1263

1 26 1661 1292

1 23 1596 1260

1 24 1604 1232

1 35 1595 1268

1 38 1743 1377

1 23 1584 1260

1 27 1622 1271

1 29 1565 1251

1 27 1615 1280

1 38 1665 1312

45

B. Performance Measuring Results

Table 3: Raw results for React without cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 30 1575 1226

1 23 1621 1327

Table 4: Raw results for React with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 21 2275 1664

1 23 1034 833

1 23 854 713

1 23 990 881

1 26 878 728

1 29 941 831

1 24 869 709

1 15 934 817

1 21 862 712

1 19 952 836

1 19 835 702

1 22 935 833

1 20 851 704

1 25 943 805

1 26 856 698

1 21 924 776

1 23 852 722

1 22 929 793

1 18 854 704

1 25 917 768

1 25 860 711

1 22 939 794

1 24 859 710

1 23 910 770

1 23 893 736

46

B. Performance Measuring Results

Table 4: Raw results for React with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 23 1163 931

1 15 861 709

1 22 955 847

1 28 880 711

1 17 953 800

1 15 847 703

1 23 961 820

1 20 854 697

1 24 962 803

1 22 855 710

1 21 993 847

1 26 873 718

1 19 1013 830

1 22 862 714

1 21 956 845

1 22 853 700

1 19 942 813

1 19 875 737

1 20 946 796

1 25 853 704

1 20 947 798

1 20 853 701

1 16 938 801

1 21 866 725

1 21 967 791

1 24 869 711

1 21 932 793

1 22 865 726

1 18 972 855

1 19 845 693

1 24 990 868

47

B. Performance Measuring Results

Table 4: Raw results for React with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 20 891 754

1 24 1019 837

1 21 848 695

1 19 978 863

1 19 835 685

1 20 969 868

1 19 865 711

1 28 996 877

1 16 837 701

1 22 945 787

1 19 831 697

1 20 996 813

1 24 854 708

1 20 956 867

1 18 574 426

1 23 834 708

1 22 946 797

1 23 869 735

1 24 1131 989

1 19 858 720

1 22 954 797

1 24 959 801

1 27 983 867

1 22 831 698

1 22 943 796

1 16 857 719

1 25 958 820

1 21 842 696

1 22 953 786

1 22 898 745

1 20 940 785

48

B. Performance Measuring Results

Table 4: Raw results for React with cache

JS Files Count Time To First Byte Time To First Paint Time To Fully Loaded

1 18 875 741

1 25 941 786

1 23 849 704

1 23 955 846

1 21 852 702

1 20 924 778

1 23 831 697

1 26 952 848

1 24 849 695

1 30 996 854

1 19 873 717

1 25 964 856

1 19 834 701

49

C. Questionnaire Results

C. Questionnaire Results

How long have you used React?

Less then a month
10.3%

1 Month - 6 Month

34.5%

6 Month - 1 Year

27.6%

More than a year

27.7%

How easy is it to get started with React?

Very Hard Hard Medium Easy Very Easy
0

5

10

15

50

C. Questionnaire Results

How easy is it to setup a new React application?

Very Hard Hard Medium Easy Very Easy
0

5

10

15

When would you use React?

• always when developing web applications

• Visualizing lots of data or building quick prototypes of CRUD applications

etc.

• any frontend app with logic

• For bigger projects

• If I have a problem that can easily be solved by using stateful components,

or if I don’t have enough time to learn a better suited framework, since I

know react pretty well by now and can develop pretty fast using it.

• Complex Userinterfaces/single Page applications

• Almost any web app or mobile app (using react native)

• In web programming

• on a one-page app

• Maybe on very large websites/SPAs with very complex markup and/or

when mostly REST based.

• For interactive front ends

• Apps with at least minimal complexity.

• Whenever I wanna start a more complex web applications

• Whenever I want to build a webapp

• It’s my go-to framework

51

C. Questionnaire Results

• complex web applications

• Getting going quickly

• any not completely trivial web frontend

• When building a one-page site

When would you NOT use React?

• only when not possible

• Complex applications that require computationally or graphically inten-

sive computations or renderings

• static webpages

• for small one page websites

• If the solution is so simple that react would just be overkill. I don’t need

react for a static imprint page, for example.

• Small Websites

• scraping, html/ xml static generation (when not intended to do server ren-

dering, e.g. for a script or so)

• For 3D web applications

• on not one-paged apps

• On small to mid size web sites

• For very small projects

• Dead-drop simple apps.

• Single page applications with only css and simple javascript

• When working with react-native and building an extensive app which will

sooner or later need ios or android specific components.

• When inheriting an Angular2 codebase

• static websites, (very) simple web apps

• Possibly things with longer maintenance phase, since React does not en-

force an architecture e.g. the way angular does it. But maybe I’d use it

regardless.

• trivial web UI

• Building a site with many different pages or when having to integrate

many other frameworks / libraries

52

C. Questionnaire Results

What are limitations of React?

• Mostly inline styles, sometimes very slow, hard to combine with some

other frameworks (like e.g. D3 etc.)

• Animations are shit

• Lot’s and lot’s of extensions and other tools (e.g. redux and webpack, to

name only a few) that quickly increase the complexity.

• From a business perspective: The legal clause that gives facebook owner-

ship of the product if it collides with facebooks business.

• Performance and SEO

• managing communications in big hierarchies of DOM (only context pos-

sible). you have to extend react with redux or similar flow management

in these cases. integrating react with frameworks or non-react projects re-

quires deep thinking.

• Client-side only. Needs additional libs to make sense, which in turn leads

to code that resembles native browser functionality (request/response)

with some XHR/Fetch/Routing stuff you otherwise do not have to care so

much about in the application. I would prefer using ServiceWorkers and

consequently use Caching mechanisms. Mostly latency is the problem,

not bandwidth. In my opinion, React’s "update only what has changed"

in markup solves a problem that does not exist on small/mid web sites.

Loading data is imminent in web based applications. When using caching

for static assets then the bandwidth overhead and additional rendering

time should not be the problem.

• You have to first read some of the many good tutorials on it. So much

boilerplate.

• As everything in the javascript ecosystem things change rapidly

• -

• Haven’t really come across anything yet

• interoperability with web components, complicated setup (as for any fron-

tend app): module bundling, testing setup etc.

• The "React way" of developing often clashes with other frameworks / li-

braries, e.g. Bootstrap or jQuery, and leads to ugly hacks to pass data

around. Mastering the component lifecycle took me quite some while.

53

C. Questionnaire Results

Also I had some problems with the global state of my application (I heard

that integrating Reflux makes that better, but that means learning yet an-

other paradigm)

What is awesome about React?

• the programming model

• Quick prototyping via hot reload, a useful component can always be found

on the web, easy to get started

• Composibility, Lifecycle hooks, Structure / Sanity

• very Modularized

• Its Extensibility, simplicity, it’s fast, there are lot’s of guides and stackover-

flow questions

• Easy to use, Big Projects are transparent

• functional, descriptive, chain of responsibility

• The state-driven paradigm and the speed

• the collaboration of components and how they can interact

• Lack of async issues.

• Ecosystem, Functional Programming

• Pretty straight forward, allows minimal and hot reloading.

• Isomorphism + React Native

• composability, JSX

• It feels so simple and straight-forward.

• testability

• If you can manage to do everything in "the React way" and basically just

pass dumb data around, handling data flow and building an application

is quite nice.

54

C. Questionnaire Results

How long have you used Express?

Less then a month
7.4%

1 Month - 6 Month

33.3%

6 Month - 1 Year
25.9%

More than a year

33.3%

How easy is it to get started with Express?

Very Hard Hard Medium Easy Very Easy
0

5

10

15

55

C. Questionnaire Results

How easy is it to setup a new Express application?

Very Hard Hard Medium Easy Very Easy
0

5

10

15

When would you use Express?

• when building small-medium applications

• Small backend servers, not too many routes, not too much work in the

backend

• any node js server, ReST APIs

• simple API, prototypes

• To optimize

• Whenever I would need a HTTP server.

• So far: Whenever I need a backend. Javascript for the win.

• Hobby Projects, in small companies

• rest apis

• Have used it only for small services yet.

• I use it serve DB routes. I’d use it for non-SPA, rather static sites.

• Small(er) Projects, no extensive testing

• It’s my go to technology for server side

• if you need a simple backend

When would you NOT use Express?

• when building large applications with lots of routes

56

C. Questionnaire Results

• Complex server-side logic & complex routing etc.

• any node app that is not a web server

• performance critical applications

• No idea, since I haven’t tried any other framework yet.

• If I have to work with people who don’t want to code javascript for server-

side code.

• Big Projects with Lots of Developers

• static server rendering

• Not enough experience up to now

• These days, never to serve more than the initial page.

• Performance Critical Applications should not be designed with react

• When inheriting a massive .Net codebase

• high performance/much computation, very large project

What are limitations of Express?

• no idea

• Performance

• Templates are messy. There are no enhancements now that IBM controls

the repo. I doubt it’ll be upgraded to HTTP/2.

• JavaScript

• Have to deal with a great deal of plumbing

What is awesome about Express?

• simplicity

• Quickly prototype servers & APIs without too much hassle

• simple routing

• Pretty easy to get started

• Setting up routes is easy

• it is fast and simple

• JavaScript aus backend

• It handles nicely all the messy, non-standard, non-compliant HTTP found

in the wild.

57

C. Questionnaire Results

• Very easy to start and very compatible

• Rich ecosystem - lots of libraries and extensions. Simple and flexible

• makes building a webserver far more easier compared to plain node.js

58

	Introduction
	Motivation
	Project

	Related Work
	Server Side Rendering (SSR)
	Automatic code splitting

	Technologies
	Node.js
	Babel
	Webpack
	Gulp
	API Server
	Express
	React

	Evaluation of ExpressJS and React as Clients
	Complexity
	Setup
	Request Handling / Routing
	Loading and Delivering Data
	Error Handling
	Application Architecture

	Performance
	Method Description
	Interpreting the results

	Evaluation Results
	Express
	React

	Embedded React
	Concept
	Implementation / Usage
	Convenience
	Provide Data

	Evaluation

	Conclusion
	Future Research

	Glossary
	Bibliography
	Appendices
	Performance Measuring Code
	Performance Measuring Results
	Questionnaire Results

